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Region-Kernel-Based Support Vector Machines for
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Abstract—This paper proposes a region kernel to measure the
region-to-region distance similarity for hyperspectral image (HSI)
classification. The region kernel is designed to be a linear combi-
nation of multiscale box kernels, which can handle the HSI regions
with arbitrary shape and size. Integrating labeled pixels and
labeled regions, we further propose a region-kernel-based support
vector machine (RKSVM) classification framework. In RKSVM,
three different composite kernels are constructed to describe the
joint spatial–spectral similarity. Particularly, we design a desirable
stack composite kernel that consists of the point-based kernel,
the region-based kernel, and the cross point-to-region kernel.
The effectiveness of the proposed RKSVM is validated on three
benchmark hyperspectral data sets. Experimental results show the
superiority of our region kernel method over the classical point
kernel methods.

Index Terms—Composite kernel, hyperspectral image (HSI)
classification, region kernel, support vector machine (SVM).

I. INTRODUCTION

HYPERSPECTRAL data contain a set of images with
the same geographic scene. These images correspond to

different spectral bands of electromagnetic radiation. Fixed a
band, the hyperspectral data reduce to a single image con-
taining the scene structure information of different materials.
Fixed an image coordinate, it obtains a spectral curve vector,
which is called a pixel [here, “pixel” refers to “sample” in a
hyperspectral image (HSI)]. Different materials have different
absorptions or reflections at a certain spectral band. Thus, it
can identify and classify the materials based on their spectral
curves. Traditional classifiers, such as the Bayesian classifier,
the k-nearest neighbor classifier, and neural networks, use the
spectral signatures in the HSI classification.

However, these traditional methods usually encounter diffi-
culty because of the measured noise, interruption, nonlinear

Manuscript received June 2, 2014; revised August 17, 2014, November 20,
2014, and January 12, 2015; accepted March 4, 2015. This work was supported
in part by the Macau Science and Technology Development Fund under Grant
FDCT/017/2012/A1; by the Research Committee at University of Macau under
Grant MYRG113(Y1-L3)-FST12-ZYC, Grant MRG001/ZYC/2013/FST, and
Grant MYRG2014-00003-FST; and by the National Natural Science Founda-
tion of China under Grant 11371007. (Corresponding author: Yicong Zhou.)

J. Peng is with the Faculty of Mathematics and Statistics and the Hubei
Provincial Key Laboratory of Applied Mathematics, Hubei University, Wuhan
430062, China, and also with the Department of Computer and Information
Science, University of Macau, Macau 999078, China (e-mail: pengjt1982@
126.com).

Y. Zhou and C. L. P. Chen are with the Department of Computer and
Information Science, University of Macau, Macau 999078, China (e-mail:
yicongzhou@umac.mo; Philip.Chen@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2015.2410991

spectral responses [1], and the Hughes phenomenon caused
by the high-dimensional small samples [2]. These make the
HSI classification an extremely challenging problem [1], [3],
[4]. Support vector machine (SVM) and other kernel-based
methods [5]–[8] overcome these limitations at a certain extent
because of their good abilities for handling high-dimensional
small-sample-sized nonlinear and noisy data [1]. In spite of
these desirable properties, SVM is rapidly turning out to be
insufficient to exploit the rich HSI information [1]. In the SVM
classification, each labeled HSI pixel is considered as a sample
point and processed independently. It ignores the correlations
between the spatial neighboring pixels. For an HSI, spatial
neighboring pixels have similar spectral characteristics and usu-
ally belong to the same class [9], [10]. The relevance between
neighboring pixels can be exploited to increase the consis-
tency and accuracy of the SVM classification [4], [11]–[13].
In fact, for a given pixel, we can extract the neighborhood
size, shape, and structure distribution information [14]. For
the pixels belonging to different materials, the corresponding
spatial geometrical structure information will be different. This
spatial information can be used to improve the classification
of pixels that are hard to discriminate using spectral features
alone. Therefore, to achieve an excellent HSI classification
performance, it would be better to combine the spectral and
spatial information.

Recently, many spatial–spectral classification methods have
been proposed to improve the HSI classification performance
[4], [15]. Morphological-transformation-based spatial–spectral
classifier extracts the morphological profile (MP) features from
the first several principal components of hyperspectral data and
fuses the extracted feature and the original spectral feature into
one stacked vector for the SVM classification [16], [17]. There
are also other spatial–spectral feature extraction methods, such
as multiple spatial–spectral features [18] and tensor features
[19], [20]. Markov random fields (MRFs) are usually combined
with SVM to perform a joint spatial–spectral classification in an
integrated Bayesian framework, where SVM is used to estimate
the Bayesian-like probability outputs, and MRF regularization
refines the SVM classification results using the spatial con-
textual information [13], [21], [22]. In SVM with composite
kernels (SVM-CK), a composite kernel was designed using
both the spectral and spatial features, where the spatial feature is
represented as the mean or standard deviation of pixels within
a spatial pixel neighborhood [11]. Based on SVM-CK, a new
composite spatial–spectral kernel was proposed in [14] and
[23], where the spatial feature for each pixel is represented as
the vector median of pixels in a morphological neighborhood
obtained by the area filtering.
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All of the aforementioned spatial–spectral methods combine
the useful spatial information with the powerful kernel-based
SVM classifier. Whether the spatial information is used at the
feature level or the decision level, the final SVM classification
is performed on feature vectors, such as MP features used in
the morphological-based classification methods and mean or
standard deviation vectors used in the SVM-CK methods. That
is, although the kernel method (SVM) is used for similarity
metric and classification, the processing features are individual
pixels or sample points. Thus, these spatial–spectral classifiers
can be regarded as the sample-point-based methods, in which
a sample vector cannot fully capture the spatial local neigh-
borhood variability of the spectral signature. Because an HSI
contains many homogeneous regions, the pixels in a homo-
geneous region generally belong to the same class [9]–[11],
[22], [24], [25]. It can classify these local homogeneous regions
directly rather than classifying the feature vectors (i.e., mean or
standard deviation vectors) extracted from the regions. One of
the existing region classification methods is the object-based
classification methods. They group the spatially adjacent pixels
into homogeneous objects and then classify these homogeneous
objects [9], [10], [24]. Although these methods use regions
or homogeneous objects as features, they have never used
the kernel metric to measure the similarity between different
regions.

In this paper, based on the HSI spatial homogeneous regions
and the kernel similarity metric, we propose a region-kernel-
based SVM (RKSVM) to classify the local homogeneous re-
gion of each HSI pixel. In the region classification, a key point
is to measure the distance or the similarity between different
regions, which is achieved by a novel region kernel in RKSVM.
In detail, for each pixel x (spectral curve vector), a corre-
sponding local region R containing x and its spatial neighbors
is generated from either a distance similarity neighborhood
or an area-filtering-based morphological neighborhood. As the
local homogeneous distribution of an HSI, pixel x and its
spatial neighbors show similar spectral features. That is, the
spectral values of pixels in the local region R change in a small
range. Based on the range of spectral values in each band, it
can determine an interval in each band and hence a regular
box to be the Cartesian product of multiple intervals, which
reflects the spectral variations of local homogeneous pixels in
the region. To describe spectral variations more accurately and
stably, multiscale boxes with different sizes are generated. For
different regions, we can construct multiscale boxes for each
region separately and compute the corresponding pairwise box-
to-box similarities of different regions by means of box kernels
[26]. Then, the similarity between different regions is defined
as a weighted average of pairwise box-to-box kernels, which
is called the region kernel in this paper. Based on the region
similarity metric, we can classify HSI regions.

Different from the sample-point-based methods that operate
on the individual samples (spectral curves), compute the dis-
tance similarity metric between different samples, and classify
a sample based on the computed sample-point-based similar-
ity metric, the region kernel method operates on the regions
(spectral curve sets) and computes the region-to-region kernel
similarity metric to classify each region. In the region kernel

method, each sample has a corresponding region. Therefore, by
classifying the regions, it can get the classification results of
each sample.

Different from the object-based classification methods, such
as the Extraction and Classification of Homogeneous Objects
(ECHO) [9], which segments the image into homogeneous
objects and then classifies these homogeneous objects based
on the minimum distance strategy or the maximum-likelihood
strategy, our RKSVM classifies local regions using the region
kernel. Instead of using homogeneous objects, RKSVM uses in-
dividual spectral pixels and their corresponding local regions or
local homogeneous objects as features. In RKSVM, each pixel
corresponds to a local region. The classification samples consist
of labeled pixels and labeled local regions, where the number of
labeled local regions is equal to the number of labeled pixels,
whereas in ECHO, the classification samples are homogeneous
objects. When the number of homogeneous objects is small, the
classification performance may be affected [24]. Because the
maximum-likelihood strategy for region classification in ECHO
needs to estimate the probability density function, it is usually
a difficult problem, particularly in the case of small sample
sizes. However, the region distance metric or the classification
method is the region kernel in RKSVM. This is because kernel-
based classification is widely used in the fields of machine
learning and HSI classification [1], [5], [6], [11]. By means of
the region kernel, it is easy to perform the linear and nonlinear
classifications of the regions.

The proposed RKSVM performs the region classification by
integrating both the spectral pixel points and the spatial local
regions. It has at least the following characteristics.

1) It is the first to use a kernel to measure the region-to-region
distance similarity for the HSI classification. By means of
a region kernel, it is easy to describe the linear or nonlinear
relations between different regions.

2) It designs a novel stack composite kernel, which integrates
the point-to-point kernel, the region-to-region kernel, and
the cross point-to-region kernel.

3) Based on the distance similarity or the morphological
connectivity, the region can be an arbitrary shape. Using
the percentile-based method, the extracted interval or box
features from the region can resist noisy pixels and abrupt
points.

4) It generalizes the state-of-the-art SVM-CK methods from
point to region and is more effective in the case with
limited training samples.

The rest of this paper is organized as follows. In Section II,
the proposed RKSVM is described in details. The experimen-
tal results and analysis are provided in Section III. Finally,
Section IV gives a summary of our work.

II. PROPOSED METHOD

In the SVM and other kernel-based methods, one can use any
kernel function K(·, ·) that fulfills Mercer’s condition (symmet-
ric and positive semidefinite) to measure the similarity between
sample points. The commonly used kernel functions are lin-
ear, polynomial, and Gaussian radial basis functions (RBFs)
[5], [6]. Because the general kernel function describes the
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Fig. 1. Point-to-point kernel and region-to-region kernel.

point-to-point similarity, we call it the point-to-point kernel
(point kernel) in this paper.

The point kernel is a symmetric and positive semidefinite
Mercer’s kernel and is widely used in the HSI classification
[5], [6], [11]. Given a set of HSI training sample points L =
{(x1, y1), . . . , (x�, y�)}, with xi ∈ Rd, based on the Gaussian
RBF, the point kernel between two points xi and xj can be
expressed as

Kpp(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(1)

where σ is the width of the RBF kernel.
For HSIs, each sample point is a spectral pixel or a spectral

curve vector. The point-kernel-based methods use a point kernel
as defined in (1) to measure the spectral similarity between sam-
ple points for classification. However, neglecting the informa-
tion related to the spatial arrangement of the pixels in the scene
[17], the point-kernel-based spectral similarity metric is insuf-
ficient to discriminate complex HSI pixels, such as spectrally
similar pixels, i.e., pixels from several subclasses of a material
(three subclasses, namely, “Soybean-notill,” “Soybean-mitill,”
and “Soybean-clean,” of “Soybean” material appeared in the
Indian Pines data set). Although these pixels have similar spec-
tral characteristics, their spatial neighborhood structures are
usually different [14]. These spatial neighborhood information
combined with the spectral information is able to identify subtle
critical differences between different pixels.

As shown in Fig. 1, each circled point represents a sample
(spectral vector); two spectrally similar target pixels x1 and x2

are quite difficult to be discriminated by the point-kernel-based
spectral similarity metric Kpp(x1,x2). Taking into account
spatial neighboring information, we can construct a pixel set
or a local region Ri for each pixel xi. The region Ri contains
the pixel point xi and its spatial similar or connected neighbors.
If we can measure the spectral–spatial kernel similarity metric
between two regions R1 and R2, that is, construct a region-to-
region kernel (region kernel) Krr(R1,R2), then the spectrally
similar pixels x1 and x2 are more likely to be correctly classi-
fied. The region kernel is embedded with the spatially structural
similarity of spectrally similar target pixels x1 and x2 and is
usually more accurate than the point kernel when the regions
are homogeneous.

In order to measure the region-to-region kernel similarity,
we propose a new RKSVM classification system, as shown in

Fig. 2. Flowchart of the proposed RKSVM classification system.

Fig. 2. It aims to perform kernel-based classification on the
labeled pixel points and the labeled regions of HSIs. Each HSI
sample is a pixel point and can be extended to a pixel region
(or spatial neighborhood), which contains the sample itself and
its spatial neighbors. The point-to-point kernel (point kernel)
is applied to measure the spectral similarity between different
pixel points. The region-to-region kernel (region kernel) and
the cross point-to-region kernel (cross kernel) are designed
to measure the similarity between different pixel regions and
between pixel points and regions, respectively. Then, different
combinations of the point kernel, the cross kernel, and the
region kernel are used in the SVM classification.

From the flowchart in Fig. 2, we can see that the key issues
of the RKSVM classification are how to construct the pixel
regions, how to define the region kernels, and how to design
an appropriate composite region kernel framework.

A. Spatial Pixel Region

In order to discriminate from the pixel point, we use the
name “pixel region.” The pixel region is actually a spatial
neighborhood. The commonly used spatial neighborhoods are
squared neighborhood [11] and adaptive morphological neigh-
borhood [14], [23]. In the fixed-shape squared neighborhood,
there usually are pixels from different structures (e.g., noise
and background) or/and from different materials. In order to
eliminate those interrupt pixels and make the local region
more spectrally consistent, we delete the pixels in the squared
neighborhood that have large spectral distances to the cen-
tral pixel, resulting in the distance similarity region. For the
construction of adaptive morphological neighborhood, an area
filtering method proposed in [14] and [23] is exploited to extract
the adaptively connected flat zones.

1) Distance Similarity Region: For sample xi, the squared
neighborhood centered at xi is

N(xi) =
{
x|x Δ

= (p, q) ∈ [pi − a, pi + a]× [qi − a, qi + a]
}

(2)

where (pi, qi) is the pixel coordinate of sample xi, a = (ω −
1)/2, and the odd number ω is the width of the squared window.
The size of the squared neighborhood for each pixel is the same,
i.e., ω × ω. The pixels in the squared neighborhood N(xi)
are denoted by xi,xi1,xi2, . . . ,xis, where s = ω2 − 1 is the
number of neighbors of xi.

The fixed-shape squared neighborhoods may overlap and
may contain background pixels or pixels from different struc-
tures, particularly for pixels on the boundary of a material.
In this case, the neighborhood cannot faithfully reflect the
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Fig. 3. (Left) Pixel point and (right) corresponding region.

interpixel correlations. In order to eliminate the effect of
noisy or inhomogeneous pixels, we design a distance similarity
region by choosing the most similar pixels in the squared
neighborhood. In detail, in the squared neighborhood N(xi),
we compute the distance between the central pixel xi and
its neighboring pixels xik, i.e., dk = ‖xi − xik‖2, and select
H − 1 neighboring pixels with the smallest distances. The
H − 1 selected neighboring pixels and the central pixel xi form
the distance similarity region of xi, i.e.,

S(xi) = {xi, x̂i,1, . . . , x̂i,H−1}. (3)

2) Adaptive Morphological Region: The adaptive morpho-
logical region is obtained using the self-complementary flat
zone area filters proposed in [14], [23], and [27]. A flat zone is
a connected region with constant gray level [28]. The flat zone
filter removes all flat zones whose areas are smaller than a given
parameter λ. The area is defined as the number of pixels in the
flat zone. After area filtering, an image is partitioned into many
marked flat zones. For a given pixel xi, the corresponding flat
zone is called the morphological region M(xi) [14], i.e.,

M(xi) =
{
x|x ∈ Zonem(xi)

}
(4)

where m(xi) is the mark of the flat zone containing xi, and
Zonem(xi) represents the corresponding flat zone.

As proposed in [14] and [23], the area filtering is performed
on the first principal component image of HSIs, and then,
the morphological neighborhood mask extracted from the first
principal component image is used to cover HSIs on each band
to obtain the final adaptive morphological region.

From the aforementioned two kinds of regions, we can find
the following: 1) by deleting dissimilar pixels from a regular
squared neighborhood, the distance similarity region can be
an irregular shape, as shown in Fig. 3; and 2) by extracting
connected neighbors, the morphological region also can be an
arbitrary shape.

B. Box

Now, we construct and extract a box feature from a region.
A box can be represented by multidimensional intervals in

d-dimensional input space and can be represented as d-ary
Cartesian product as follows:

B =
{
x ∈ Rd : xz ∈ [az, bz], z = 1, . . . , d

}
Δ
= [a1, b1]× [a2, b2]× · · · × [ad, bd]

where d is the number of dimensions or spectral bands, and
az, bz are the lower and upper bounds of the interval in the zth
spectral band. If d = 2, the box B is a rectangle in the plane,
which contains all the points located in the rectangle. If d = 3,
the box B is a cube in the 3-D space. For d > 3, the box B is a
hyperrectangle.

To construct a box, it needs to determine only the lower and
upper bounds of the interval in each band. We first give the
following notations. Each pixel xi is a d-band spectral vector,
i.e., xi = [x1

i , . . . , x
d
i ]

T
. For a target pixel xi, a corresponding

region Ri has been constructed in Section II-A. Assume that
Ri contains m pixels, i.e., Ri = {xi,xi,1, . . . ,xi,m−1}. Fixed
a band z, the pixels in the region Ri reduce to a vector,
which is denoted by vi = Rz

i = [xz
i , x

z
i,1, . . . , x

z
i,m−1]

T. A
simple way to define an interval for the band z is to set the
lower and upper bounds of the interval as the minimum and
maximum numbers in vi. However, this extreme interval fails
to reflect the variations of most samples and may enlarge the
region.

In order to eliminate the abrupt points and to obtain a mild
interval, we set the lower bound azi and the upper bound bzi
of the interval in band z as the �th (0 < � < 50) and uth (50 <
u < 100) percentiles of the values in the vector vi, respectively,
i.e., azi = prctile(vi, �) and bzi = prctile(vi, u). For example, if
vi = [1, 4, 4, 5, 5, 6, 7, 7, 10]T with the target pixel in the fifth
position, let � = 25 and u = 75, it obtains the lower bound azi =
prctile(vi, 25) = 4, the upper bound bzi = prctile(vi, 75) = 7,
and the interval [azi , b

z
i ] = [4, 7]. From this example, we can see

the following:

1) The interval can reflect the variation range of spectral
values of the homogeneous pixels in the region, i.e.,
[4, 7] reflects the variations of seven values [4, 4, 5, 5, 6, 7,
7]. Compared with SVM-CK that uses a mean to represent
these values, i.e., mean(vi) = 5.44, the interval contains
more information.

2) The percentile-based interval selection method can elim-
inate abrupt points, i.e., 1 and 10 in vi, avoiding ex-
treme interval [1, 10]. In the construction of region, we
have used two alternative methods to eliminate the inter-
rupts, i.e., deleting dissimilar pixels from a fixed-shape
squared neighborhood or choosing adaptively connected
neighboring pixels in a morphological neighborhood. The
percentile-based method can be considered as a comple-
mentary to further eliminate the interrupts or potential
abrupt points.

3) The interval based on the percentiles is around the target
point, i.e., [4, 7] containing the target point 5. Due to
the local homogeneous distribution of an HSI, the tar-
get pixel and its neighboring pixels show similar spec-
tral characteristics. Our interval feature is always around
the target point and can reflect this neighborhood sim-
ilarity. That is, the interval will not be deviated from
the target point far away. In the extreme case that the
lower and upper bounds are set as the mean, the in-
terval is reduced to a mean point, and our method is
reduced to SVM-CK, whose reasonability is validated
in [11].
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Fig. 4. Pixels in a spatial region: target pixel (red), neighboring pixels of the
target pixel (gray), lower bound vector (blue), upper bound vector (green), and
mean vector (magenta).

The above conclusion can also be seen from a real example
based on the KSC data (see Section III-A) in Fig. 4. It shows
the pixels in a distance similarity region and the extracted
interval features. For a target pixel in the red color, we have
constructed a local region containing the target pixels and its
spatial neighbors in the gray color. Based on the percentiles of
values in each band, we extract a lower bound (l = 25) and
an upper bound vector (u = 75) shown in the blue and green
colors, respectively. The mean vector of pixels in the region is
shown in the magenta color. In general, the extracted interval
bounds most of the central pixels, including the target pixel and
mean pixel.

Considering all bands 1 ≤ z ≤ d, we obtain a lower bound
vector ai = [a1i , . . . , a

d
i ]

T
and an upper bound vector bi =

[b1i , . . . , b
d
i ]

T
of the region Ri. Based on these multidimen-

sional lower and upper bounds, the box is expressed as

Bi =
{
x = (x1, x2, . . . , xd)T, xz ∈ [azi , b

z
i ]
}

Δ
=

[
a1i , b

1
i

]
×
[
a2i , b

2
i

]
× · · · ×

[
adi , b

d
i

]
. (5)

C. Box Kernel

For each region, we have constructed a box feature in
Section II-B. Now, we use a box kernel to measure the distance
similarity between different boxes. Recall that the general
point kernel, such as the Gaussian RBF kernel defined in
(1), measures the similarity between sample points; the box
kernel extends the point kernel from points to boxes. It can be
computed by convolving the point kernel with the characteristic
function of the box [26].

The box-to-point kernel Kbp and box-to-box kernel Kbb are
computed as follows [26]:

Kbp(Bj ,x)=
1

νj

d∏
i=1

√
2πσ

2

(
h

(
xi − bij√

2σ

)
−h

(
xi − aij√

2σ

))

(6)

Fig. 5. Flowchart of the (left) point kernel and the (right) region kernel.

Kbb(Bp,Bq) =
(
√
πσ2)

d

νpνq

d∏
i=1

(
φ
(
bip, b

i
q

)
− φ

(
aip, b

i
q

)
− φ

(
bip, a

i
q

)
+ φ

(
aip, a

i
q

))
(7)

where νj is the volume of the box Bj , and

φ(a, b) := t · h(t)− 1√
π
e−t2 , t =

a− b√
2σ

and h is the complementary error function [26].

D. Region Kernel

For each pixel point xi, we have constructed a pixel region
Ri (distance similarity region S(xi) or morphological region
M(xi)) in Section II-A and extracted a box feature Bi from
the local region Ri and provided a box kernel to measure
the similarity between different boxes in Sections II-B and C,
respectively.

Now, we need to measure the distance similarity between
different pixel regions. For this purpose, we first extract a set
of multiscale box features from each region, then compute the
box kernels between pairwise boxes from different regions,
and finally design a region kernel to measure the similarity
between two regions as a weighted average of pairwise box-to-
box kernels of two regions. The flowchart of the region kernel
is shown in Fig. 5, where the left part is the point kernel and the
right part is the region kernel.

As shown in Section II-B, for a pixel region, by setting differ-
ent lower and upper thresholds �k and uk, k = 1, . . . , c, we can
obtain different scales of boxes Bi,k of a region. Assume that
each of two regions Ri and Rj can be represented as c boxes,
namely, Bi,1, . . . ,Bi,c and Bj,1, . . . ,Bj,c, respectively. The
boxes in two regions with the same scale are compared and
combined as a box kernel. The region kernel between regions
Ri and Rj is defined as the linear combination of the pairwise
box-to-box kernels as follows:

Krr(Ri,Rj) =

c∑
k=1

βkKbb,k(Bi,k,Bj,k) (8)

where β = [β1, . . . , βc]
T is a linear combination coefficient

vector, which measures the contribution of different box kernels
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Kbb,k, k = 1, . . . , c. Because the pairwise box-to-box kernels
in the same scale are considered, no matter in the sequential
processing or the random processing of the given c scales, the
region kernel is the same.

Next, we determine the coefficient vector β based on the
kernel alignment [29]–[31]. The kernel alignment measures the
similarity between two kernels K1 and K2 [29], i.e.,

A(K1,K2) =
〈K1,K2〉F√

〈K1,K1〉F 〈K2,K2〉F
(9)

where 〈·, ·〉F is the Frobenius norm, and it can be used to
choose the optimal kernel in a set of candidate kernels. Given
a benchmark kernel, the importance of each candidate kernel
is evaluated by comparing its kernel alignment value with the
benchmark kernel. Here, the benchmark kernel is chosen as the
ideal kernel [29], [32], which is defined as

K0(xi,xj) =

{
1, yi = yj

0, yi �= yj .
(10)

The ideal kernel leads to a perfect classification inspired from
an “oracle,” two samples xi and xj should be considered as
“similar” (with kernel value 1) if and only if they belong to the
same class (yi = yj) [29], [32].

Based on the ideal kernel K0, the importance of each candi-
date box kernel Kbb,k is assessed by the kernel alignment value
A(K0,Kbb,k). The corresponding coefficient βk of box kernel
Kbb,k in (8) is now computed as

βk =
A(K0,Kbb,k)∑c
k=1 A(K0,Kbb,k)

. (11)

Similarly, when a region is degenerated to a point in Fig. 5,
the region-to-point cross kernel between a region Rj and a
point xi is defined as

Krp(Rj ,xi) =

c∑
k=1

β′
kKbp,k(Bj,k,xi) (12)

where β′
k is the normalized kernel alignment value between

Kbp,k and K0.
Now, we have obtained the point kernel, the region kernel,

and the cross kernel in (1), (8), and (12), respectively. It can
be seen that the point kernel operates on pixel points and can
be computed directly according to the general kernel function,
such as the commonly used Gaussian function in (1), whereas
the region kernel operates on pixel regions and is relatively
difficult to compute, where complexity convolution calculations
between the point kernel and characteristic functions of mul-
tiscale boxes are needed, as shown in (6) and (7). In spite of
different operation objects and computing methods, the region
kernel and the point kernel have the same form and meaning if
we consider the region as a point. In particular, when the regions
are reduced to points, the region kernel is the point kernel.

Now, we give some prosperities of the region kernel.
Proposition 1: The region kernels Krr and Krp are symmet-

ric and positive definite kernels.

Proof: According to [26, Proposition 4.1], the box
kernels Kbb,k and Kbp,k are symmetric and positive definite
kernels. Thus, the region kernel as a linear combination of finite
box kernels is also a symmetric and positive definite kernel.

Proposition 2: If Kpp is a point kernel and Krr is a region
kernel, then Kpp +Krr is a valid kernel.

Proof: Denote K = Kpp +Krr; the elements of kernel
K can be represented as

K ((xi,Ri), (xj ,Rj)) = Kpp(xi,xj) +Krr(Ri,Rj). (13)

Based on the symmetry of Kpp and Krr, it is easy to validate
the symmetry of the new kernel K as follows:

K ((xi,Ri), (xj ,Rj)) = K ((xj ,Rj), (xi,Ri)) . (14)

Because Kpp and Krr are positive definite kernels, the kernel
K is positive definite. Therefore, K is a valid kernel.

Proposition 3: Given a point kernel Kpp and region kernels
Krr and Krp. If Krr −KrpK

−1
ppKpr or Kpp −KprK

−1
rr Krp

is positive semidefinite, then the following function is a valid
kernel:

K =

[
Kpp Kpr

Krp Krr

]
. (15)

Proof: Because Kpp, Krp, and Krr are symmetric ma-
trices, the stack matrix K is symmetric. Because Kpp and Krr

are positive definite kernels, based on the Schur complement
condition for positive definiteness [33], if Krr −KrpK

−1
ppKpr

or Kpp −KprK
−1
rr Krp is positive semidefinite, then the stack

kernel K is positive semidefinite.

E. Composite Region Kernel Framework

The composite region kernel method deals with both the
labeled points and the labeled regions. Each labeled pixel xi

can be extended to a region Ri. The region Ri contains the
pixel xi and its spatial neighbors and can represent pixel xi

at a certain extent. The pixel xi and its label yi consist of a
supervised sample (xi, yi). Similarly, the region Ri and label yi
also consist of a supervised sample (Ri, yi). Given a collection
of labeled points and corresponding labeled regions

L = {(x1, y1), . . . , (x�, y�)}

R = {(R1, y1), . . . , (R�, y�)} (16)

we can compute the point-to-point kernel (point kernel) Kpp(L,
L), the point-to-region cross kernel Kpr(L,R), and the region-
to-region kernel (region kernel) Krr(R,R). When the point-
and region-based kernels are computed, we can treat the points
and regions as the same and implement the composite region
kernel classification.

In the following, we propose three composite region kernels.
1) Single Region Kernel: The single-region-kernel-based

RKSVM classification framework uses the region kernel
alone, i.e.,

K = Krr(R,R). (17)
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2) Weighted Summation Region Kernel: Motivated by the
general composite point kernel classification framework in
SVM-CK [11], we propose a weighted summation region ker-
nel for the RKSVM classification, i.e.,

K = μKrr(R,R) + (1− μ)Kpp(L,L) (18)

where μ is a combination coefficient balancing the pixel-point-
based point kernel and the pixel-region-based region kernel.

3) Stack Region Kernel: Considering the cross-information
between the region kernel and the point kernel, we further
propose a new stack kernel on the 2� labeled pairs in (16). In
the training phase, we compute the stack kernel K that contains
the point kernel, the cross kernel, and the region kernel as
follows:

K =

[
Kpp(L,L) Kpr(L,R)
Krp(R,L) Krr(R,R)

]
(19)

and then train the SVM model to obtain the coefficient vector
α satisfying f = Kα. In the prediction phase, for each testing
sample x̂, we compute the corresponding pixel region R̂ and
stack kernel K̂, i.e.,

K̂ =
[
Krp(R̂,L) Krr(R̂,R)

]
(20)

and predict the label using the decision value f̂ = K̂α. Note
that, different from the single region kernel and the weighted
summation region kernel, the stack kernel has different forms
in the training and testing phases.

Incorporating the spectral training pixel points and the spa-
tial labeled regions, the proposed RKSVM is summarized in
Algorithm 1.

Algorithm 1 RKSVM

Input: Training samples {(xi, yi)}�i=1, similarity neighbor-
hood scale ω and number H , or morphological area param-
eter λ
1 Define the spatial pixel region Ri for each sample xi

1.1 Find the similarity neighborhood region S(xi) in (3), or
1.2 Determine the morphological region M(xi) in (4)

2 Compute the point and region kernels
2.1 Construct multiscale boxes from the region
2.2 Compute box kernels using (6) and (7)
2.3 Solve the coefficient β by (11)
2.4 Obtain the region kernels (8) and (12)

3 Perform SVM classification using:
3.1 the single region kernel in (17), or
3.2 the weighted summation region kernel in (18), or
3.3 the stack region kernel in (19)

Output: The prediction label for each sample

III. EXPERIMENTAL RESULTS

The proposed RKSVM is compared with the spectral, spatial,
and spectral–spatial SVMs on three hyperspectral data sets.
In the experiments, Kω represents the spectral SVM using
the spectral features alone. Ks denotes the spatial SVM using

Fig. 6. KSC data set. (a) RGB composite image of bands 31, 21, and 11.
(b) Ground-truth map.

only the spatial features represented as the mean of neigh-
boring pixels. μKs+ω refers to the spectral–spatial SVM with
weighted summation composite kernel, i.e., μKs+ω = μKs +
(1− μ)Kω . Different neighborhood systems can be used in
RKSVM. Using the distance similarity neighborhood in (3) and
the morphological neighborhood in (4), the proposed RKSVM
is called RKSVM-SN and RKSVM-MN, respectively. In the
following, Kr

S and Kr
M refer to RKSVM-SN and RKSVM-

MN with the single region kernel defined in (17), respectively.
μKr+ω

S and μKr+ω
M refer to RKSVM-SN and RKSVM-MN

with the weighted summation region kernel defined in (18),
respectively, where the combination coefficient μ is set as
0.8. K [r,ω]

M and K
[r,ω]
S refer to RKSVM-SN and RKSVM-MN

with the stack region kernel defined in (19), respectively. In
RKSVM-SN and RKSVM-MN, the lower and upper thresh-
olds � ∈ [25, 30, 35] and u ∈ [65, 70, 75] are used to generate
multiscale boxes. For all SVM-based algorithms, the Gaussian
kernel is used, and LIBSVM software is used to implement
SVM [34]. The classification performance is assessed on the
testing set by the overall accuracy (OA), which is the number
of correctly classified samples divided by the number of total
testing samples, and by the kappa coefficient (κ), which mea-
sures the degree of classification agreement.

A. Hyperspectral Data Sets

Three public HSI data sets are used.1

1) Kennedy Space Center: The data set was acquired by the
NASA AVIRIS instrument over KSC, Florida, on March
23, 1996 [35]. The image scene has the size of 512 ×
614 pixels and 224 spectral channels. After discarding
water absorption and noisy bands, 176 bands remain. It
contains 13 ground-truth classes. The total number of
samples is 5211, ranging from 105 to 927 in each class.
The false color composition of bands 31, 21, and 11 and
the ground-truth map are shown in Fig. 6.

2) University of Pavia: The data set was acquired in 2001 by
the ROSIS instrument over the city of Pavia, Italy [36].
This image scene corresponds to the University of Pavia

1Available online: http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes.
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Fig. 7. University of Pavia data set. (a) RGB composite image of bands 60, 30,
and 2. (b) Ground-truth map.

Fig. 8. Indian Pines data set. (a) RGB composite image of bands 50, 27, and
17. (b) Ground-truth map.

and has the size of 610 × 340 pixels and 115 spectral
bands. After discarding noisy and water absorption bands,
103 bands are retained. The data contain nine ground-truth
classes. The false color composition of bands 60, 30, and
2 and the ground-truth map are shown in Fig. 7.

3) Indian Pines: The data set was acquired by the AVIRIS
sensor in 1992. The image scene contains 145 ×
145 pixels and 220 spectral bands, where 20 channels were
discarded because of the atmospheric affection. There are
16 classes in the data set. The total number of samples is
10 249, ranging from 20 to 2455 in each class. The false
color composition of bands 50, 27, and 17 and the ground-
truth map are shown in Fig. 8.

B. Parameter Analysis

In RKSVM, there are SVM parameters (regularization pa-
rameter C and kernel parameter σ) and spatial region related
parameters (neighborhood window ω and the number of similar
pixels H in RKSVM-SN or area size λ in RKSVM-MN).
We take the KSC data set as an example to investigate the
parameters separately. We first investigate the sensitivity of
SVM parameters C and σ on the stack-kernel-based RKSVM
methods in (19), where C is chosen from the set {1, 10, 100,
1000, 10 000}, and σ varies in the range {2−4, 2−3, . . . , 24}.
Fifteen samples in each class are selected as the training set for
the parameter selection. We present the classification OAs with

different parameter values and choose the optimal parameter
values such that OA is maximized. Fig. 9(a) and (b) shows OA
as a function of C and σ for the stack-kernel-based RKSVM-
SN and RKSVM-MN, respectively. It can be clearly seen that
OAs follow a similar trend for both algorithms. OAs are stable
when C varies from 100 to 10 000, and σ changes from 2−1 to
22. The proposed RKSVM is not very sensitive to the SVM
parameters. In the following experiments for all three data
sets, we set C = 1000 and σ = 2. It should also be noted that
when σ tends to zero (σ = 2−4), the SVM classifier is severe
underfitting and the entire data space is assigned to the majority
classes, which leads to extremely bad results, with OAs only
about 20%.

Next, we investigate RKSVM-SN parameters: the neighbor-
hood window ω and the number of similar pixels H . Seven
different neighborhood windows, i.e., 3× 3, 5× 5, and 15×
15, are considered. The number H in the distance similarity
neighborhood S(xi) in (3) is equal to the number of similar
pixels in the square neighborhood N(xi) in (2). After deleting
several dissimilar pixels in N(xi), the remaining pixels are
called similar pixels. Thus, for determining H , it needs to
determine only the ratio of deleted pixels to total pixels in
N(xi). Denote the ratio of deleted pixels as η, then H =
(1− η)× ω2. The ratio η is chosen from the set {0, 5%, 10%,
15%, 20%, 30%, 40%, 50%}. Fixed η, we first investigate the
neighborhood window ω. Based on obtained window ω, we
further investigate the ratio of deleted pixels η. Fig. 10(a) shows
the changes of OAs as a function of ω, where the window of
13 × 13 provides the best OA. The OA versus η is shown
in Fig. 10(b). By deleting several noisy or inhomogeneous
interrupted pixels in the fixed-shape squared neighborhood,
the OA increases at a certain extent, as stated in Section II-A1.
However, when the ratio of deleted pixels exceeds a certain
limit, many useful homogeneous pixels are deleted, and the
OA decreases rapidly. The ratio of deleted pixels η corre-
sponding to the peak OA value (η = 10%) is used to deter-
mine an optimal number of pixels in the distance similarity
region.

Now, we show the OA of RKSVM-MN on the area size
parameter λ in Fig. 11, where λ is chosen from the set
{5, 10, 20, . . . , 100}. It can be seen that the OA is insensitive
to the area size. In the experiments, the parameter λ is chosen
as 20 for the KSC data set.

Similarly, we can find the optimal parameters for the other
two data sets. That is, for the University of Pavia data set, ω =
7, η = 15%, and λ = 50; for the Indian Pines data set, ω = 11,
η = 40%, and λ = 100.

C. Comparison Results

The effectiveness of the RKSVM methods under different
numbers of training samples per class is investigated. We
randomly choose N = 5, 10, 15, 20, 25, and 30 samples from
each class to form the training sets, respectively (For the class
less than N samples, half of the total samples are chosen.). The
remaining samples consist of the testing sets. In each case, the
experiment is repeated ten times with randomly chosen training
samples. The results of ten runs are averaged. It should be noted
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Fig. 9. OA versus SVM parameters C and σ. (a) RKSVM-SN. (b) RKSVM-MN.

Fig. 10. RKSVM-SN parameters. (a) OA versus the neighborhood window ω. (b) OA versus the ratio of deleted pixels η.

Fig. 11. RKSVM-MN parameter. OA versus the area size λ.

that the samples in different sample sizes are independent and
randomly selected.

The classification OAs and kappa coefficients under different
numbers of training samples per class are shown in Tables I–III.
It should be noted that, for the University of Pavia data set, the

morphological region in RKSVM-MN is obtained as the union
of morphological neighborhoods corresponding to the first
and second principal component images because the second
principal component accounts for a considerable contribution.
From the tables, we can conclude the following.

1) With the increase of training samples, OAs and kappa
coefficients for all algorithms are greatly improved. The
proposed composite region kernel methods (RKSVM-SN
and RKSVM-MN) show a significant improvement over
the point-kernel-based SVM-CK with the single spectral
kernel, the single spatial kernel, and the weighted summa-
tion spatial–spectral kernel.

2) Compared with SVM-CK, the proposed RKSVM is quite
effective in the case with limited training samples, seeing
the results in the case of N = 5.

3) Comparing the single region kernel Kr
S in the fourth

column (take RKSVM-SN as an example) with the single
spectral point kernel Kω and the spatial point kernel
Ks in the first and second columns in the three tables,
investigating all the cases ranging from 5 to 30 labeled
samples per class for training, the single region kernel Kr

s

improves the single spectral point kernel Kω by the OA
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TABLE I
CLASSIFICATION ACCURACIES (%) ON THE KSC DATA SET

of nearly 8%–12% for the KSC data set, 14%–17% for
the University of Pavia data set, and 22%–25% for the
Indian Pines data set and improves the single spatial point
kernel Ks by the OA of 1%–3%, 5%–7%, and 5%–10%
for the three data sets, respectively. In a word, the region
kernel dramatically improves the spectral and spatial point
kernels. This demonstrates that the region in RKSVM
can capture local pixel variations more effectively than
the spectral vector or the mean vector used in the tra-
ditional pixel-point-based SVM-CK methods, and the
region-to-region similarity measured by the region kernel
is more accurate than the point-to-point similarity.

4) Comparing the weighted summation region kernel μKr+ω
S

in the fifth column with the single region kernel Kr
S in

the fourth column, μKr+ω
S almost provides same results

with Kr
S on the three data sets. It demonstrates that a

simple linear combination of the region kernel and the
point kernel is ineffective.

5) Comparing the stack region kernel K
[r,ω]
S in the sixth

column with the single region kernel Kr
S in the fourth

column, K [r,ω]
S improves Kr

S at a certain extent. In par-
ticular, in the case of five labeled samples, stack kernel
K

[r,ω]
S improves single region kernel Kr

S by 1.8%, 2%, and
1.7% on the three data sets, respectively. It shows that the
stack composite way is more effective than the weighted
summation composite way, and the cross point-to-region
kernel used in the stack kernel plays a role in increasing
the accuracy.

6) Comparing the region kernel in the second three columns
and the point kernel in the first three columns, it can be
seen that the improvements of classification performance
are achieved by using the region kernel and the stack
composite classification framework, where the substantial
improvements rely on the use of the region kernel.

7) Among the three different kinds of region kernels, the
proposed stack region kernel (K [r,ω]

M or K
[r,ω]
S ) using

additional cross-information (point-to-region kernel)
provides the best overall results. For the KSC and Univer-
sity of Pavia data sets, the similarity-neighborhood-based
RKSVM-SN methods show slightly better results than
the morphological-neighborhood-based RKSVM-MN

methods. For the Indian Pines data set, the classification
results of RKSVM-MN are much better than those of
RKSVM-SN.

Figs. 12 and 13 show the classification maps for the Uni-
versity of Pavia and Indian Pines data sets in the case of 30
labeled samples per class, respectively. The maps correspond to
the classification results using different pixel-point-based com-
posite kernels and pixel-region-based composite kernels. It can
be seen that the RKSVM methods show relatively better results
than the SVM-CK methods in terms of consistent classification
results with little noise.

D. Discussion

In the proposed RKSVM, we should note the following.

1) In RKSVM-SN, the distance similarity region is obtained
from the fixed-window squared neighborhood by dis-
carding outliers. The selected region can reflect spectral
variations of local homogeneous pixels at a certain ex-
tent. This can be further improved by using multiwindow
(different ω) neighborhood systems and fusing multiple
complementary information in different windows for han-
dling complex HSI structures (different sizes and shapes).
In RKSVM-MN, the area filtering based morphological
region can adaptively catch the connected neighboring
pixels belonging to the same structure (flat zone). This
neighborhood is local homogeneous and spectrally con-
sistent [14].

2) Using a region and a region kernel to model the local
homogeneous pixel relations is feasible. The region is used
to capture spatial local homogeneous pixels. The only
requirement is that the pixels in the region should have
the same label. Due to the homogeneous distribution of
an HSI, the local pixel patch or region usually contains
the same material. This special characteristic ensures the
effectiveness of the region model. Moreover, the region is
obtained from the similarity neighborhood or the adaptive
morphological neighborhood, in which the homogeneous
pixels are kept whereas interrupt pixels are removed at a
certain extent. Thus, using a region to capture the local
homogeneous pixels is feasible.
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TABLE II
CLASSIFICATION ACCURACIES (%) ON THE UNIVERSITY OF PAVIA DATA SET

TABLE III
CLASSIFICATION ACCURACIES (%) ON THE INDIAN PINES DATA SET

TABLE IV
WITHIN-CLASS AND BETWEEN-CLASS SIMILARITIES BETWEEN DIFFERENT SAMPLES FROM THE KSC DATA SET

TABLE V
CLASSIFICATION OAS OF RKSVM IN SINGLE-SCALE BOXES AND MULTISCALE BOX IN THE CASE OF 15 LABELED SAMPLES PER

CLASS FOR TRAINING (THE FIRST AND SECOND ROWS FOR EACH DATA SET CORRESPOND TO THE OAS OF THE

SINGLE-REGION-KERNEL-BASED RKSVM-SN AND RKSVM-MN, RESPECTIVELY.)
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Fig. 12. Classification maps on the University of Pavia data set (OAs are included in the parentheses).

Fig. 13. Classification maps on the Indian Pines data set (OAs are included in the parentheses).

The proposed region kernel can accurately reflect region
similarity. We provide a simulation example on the KSC
data set to show that the region-kernel-based region-to-
region similarity metric (RRSM) in (8) is more accurate
than the traditional Gaussian-kernel-based point-to-point
similarity metric (PPSM) in (1). We choose a sample
from the Scrub class as the benchmark sample and find
five other samples from the same class and a different
class, respectively. Fig. 14(a) shows the spectral curves

of the benchmark sample in red, its five homogeneous
samples in blue, and five inhomogeneous samples from the
Graminoid marsh class in green. In Fig. 14(b), five inho-
mogeneous samples in green are from the Willow swamp
class.

From the first case in Fig. 14(a), we can see that the
benchmark sample is more similar to the five homoge-
neous samples than to the five inhomogeneous samples,
whereas in the second case in Fig. 14(b), the spectral curve



4822 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 9, SEPTEMBER 2015

Fig. 14. Spectral curves of selected samples from the KSC data set: a benchmark sample (red) and five homogeneous samples (blue) from the Scrub class,
(a) five inhomogeneous samples (green) from the Graminoid marsh class, and (b) five inhomogeneous samples (green) from the Willow swamp class.

of the benchmark sample is closer to that of the inho-
mogeneous samples. Table IV shows the within-class and
between-class similarities between the benchmark sample
and its five homogeneous and inhomogeneous samples,
in terms of PPSM and RRSM. From Table IV, we can
clearly see that the PPSM-based within-class similarities
are larger than the between-class similarities in Case 1,
but smaller than the between-class similarities in Case 2.
Based on the point-to-point spectral similarity metric, tra-
ditional spectral-based classifiers will make a correct clas-
sification for the benchmark sample in Case 1 but a wrong
classification in Case 2. The spectral PPSM is insufficient
to reflect the intrinsic similarity between the HSI samples.
According to the spatial region distribution characteristics
of an HSI, the spatial region structures of different materi-
als will be different and can be used to improve the spectral
similarity. By exploiting the spatial region size, shape,
and structure information, the RRSM-based within-class
similarities are larger than the between-class similarities
in both cases. Moreover, compared with PPSM, RRSM
increases the within-class similarities, whereas it reduces
the between-class similarities. That is, it enlarges the
difference between the homogeneous and inhomogeneous
samples and increases the class separability. The bench-
mark sample that is wrongly classified by the spectral
PPSM in Case 2 is now correctly classified by using the
RRSM.

3) In RKSVM, we construct the region-to-region kernel by
means of multiscale box kernels. Considering that one
single box kernel is insufficient to describe the similarity
between different complex pixel regions, we use a linear
combination of multiscale box kernels to approximate the
region-to-region distance similarity. In our experiments,
a box is generated by choosing a lower threshold � ∈
[25, 30, 35] and an upper threshold u ∈ [65, 70, 75]; thus,
there are nine single-scale boxes. We show the classifica-
tion OAs of the single-region-kernel-based RKSVM-SN
and RKSVM-MN in the cases of nine single-scale boxes
and multiscale box (the combination of nine boxes) in
Table V, where 15 labeled samples per class are used

for training. It can be clearly seen that the classification
OAs in the multiscale box are better than those in the
single-scale boxes for the University of Pavia (PaviaU)
and Indian Pines data sets. In particular, for University
of Pavia, the multiscale box improves the single-scale
boxes by OA of almost 1% and 2% for RKSVM-SN
and RKSVM-MN, respectively. For the KSC data set, the
OA in the multiscale box is extremely close to the best
OA in single-scale boxes. From these results, we find
that the combination of multiscale boxes in our RKSVM
can approximate or improve the optimal results in the
single-scale boxes. Using multiscale boxes, RKSVM is
free of the scale selection and can fuse the complementary
information in different single-scale boxes to improve the
classification performance.

4) It should be noted that the region based on distance
similarity measure or morphological operation can be an
irregular shape in the spatial domain, whereas the box has
a regular shape, in the form of d-ary Cartesian product.
The box is constructed based on the spectral values of
pixels in the region and consists of multidimensional
intervals to bound spectral values in each spectral band.
The region captures spatial neighboring pixels, whereas
the box reflects the spectral variations of these pixels.

5) Effectiveness of classification is desirable to the case with
limited training samples. In RKSVM, all pixels in a region
are intuitively assigned as the same class label. The labeled
regions can be considered as additional training samples,
particularly in the framework (19). Therefore, compared
with classic SVM methods, RKSVM is more effective to
the case with limited training samples.

6) RKSVM can be considered as a generalization of SVM-
CK. Different from SVM-CK that uses the mean of the
pixels in a spatial neighborhood, RKSVM uses different
lower and upper bounds of the pixels in the neighborhood
region to form boxes. That is, SVM-CK operates on pixel
points, whereas RKSVM operates on multiscale pixel sets.
In the extreme case, when the lower and upper bounds
are chosen as the mean, the region is reduced to the mean
sample, and RKSVM can revert back to SVM-CK.
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VI. CONCLUSION

In this paper, we have proposed a new region-kernel-based
SVM framework for classification of hyperspectral remote
sensing images. Different from the traditional composite ker-
nel methods operating on pixel points, the proposed RKSVM
focuses on the pixel regions and classifies the local regions
of an HSI by means of region kernel. It uses a region to
capture the local homogeneous pixels and uses a composite
region kernel to achieve simultaneous classification of labeled
pixels and labeled regions. Experimental results have shown
that, by integrating the labeled pixels and the prior knowledge
on the spatial homogeneous regions, the proposed pixel-region-
based RKSVM outperforms pixel-point-based SVM-CK
consistently.
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